Exercise 291

For the following exercises, solve the logarithmic equation exactly, if possible.

$$
\ln x+\ln (x-2)=\ln 4
$$

Solution

Combine the logarithms on the left side.

$$
\ln x(x-2)=\ln 4
$$

For both sides to be equal, the arguments must be equal.

$$
x(x-2)=4
$$

Expand the left side.

$$
x^{2}-2 x=4
$$

Bring all terms to one side.

$$
\begin{equation*}
x^{2}-2 x-4=0 \tag{1}
\end{equation*}
$$

Observe the coefficient of x is -2 . Divide this number by 2 and then square it.

$$
-2 \quad \rightarrow \quad \frac{-2}{2}=-1 \quad \rightarrow \quad\left(\frac{-2}{2}\right)^{2}=(-1)^{2}=1
$$

This is what needs to be added to both sides of equation (1) in order to complete the square.

$$
\begin{gathered}
x^{2}-2 x+1-4=0+1 \\
(x-1)^{2}-4=1 \\
(x-1)^{2}=5
\end{gathered}
$$

Take the square root of both sides.

$$
\sqrt{(x-1)^{2}}=\sqrt{5}
$$

Since there's an even power (2) under an even root (2) and the result is an odd power (1), the result needs an absolute value sign.

$$
|x-1|=\sqrt{5}
$$

Place \pm on the right side to remove the absolute value sign.

$$
x-1= \pm \sqrt{5}
$$

Solve for x.

$$
x=1 \pm \sqrt{5}
$$

Now plug these solutions into the original equation. The logarithm of a negative number is undefined, so the solution $x=1-\sqrt{5} \approx-1.23$ is discarded. Therefore,

$$
x=1+\sqrt{5} .
$$

